合同范文工作计划范文工作总结范文合作方案范文日志日报范文工作报告范文年终总结范文申请书范文通知书范文请假单范文活动策划范文活动报道范文简历范文委托书范文授权书范文论文范文简报范文志愿书
初一数学说课稿范文(精选9篇)
初一数学说课稿范文 第一篇
说教材
“正数与负数”是人教版七年级数学上册第一章第一节的内容,属于“数与代数”领域的知识、本节课是学生学过的自然数与分数的延续和拓展,又是后面研究有理数的基础,因此起到了承上启下的作用、作为初中阶段的第一节课,不仅要让学生学会区分正、负数以及用正、负数表示相反意义的量,还要培养学生对数学学习的兴趣和自信心、
说教法目标
根据课程标准和学生认知特点,我确定如下三维教学目标:
(1)知识与技能:
理解正、负数的概念,了解正数与负数是从实际需要中产生的;会列举出周围具有相反意义的量,并用正负数来表示;会判断一个数是正数还是负数;明确零既不是正数,也不是负数。
(2)过程与方法:
探索负数概念的形成过程,使学生建立正数与负数的数感。
(3)情感态度与价值观:
实际例子的引入,让学生体验到数学来源于生活,服务于生活,激发学生学习数学的兴趣。
说教学重难度
根据本节课的教学内容,考虑到学生已有的认知结构和心理特征,我将确定如下教学重难点:
教学重点:了解正、负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:了解负数的意义及0的内涵。
说教学方法
为了突出重点,突破难点,使学生能够达到教学目标,我将在教法上采用引导启发法和讲解传授法相结合的方法来完成本节课的教学。这是因为七年级的学生个性活泼,学习积极性高。在整个过程中,我将讲解和分析与学生自己归纳相融合,激发学生的学习兴趣。
说学法
鼓励学生积极主动地参与到教与学的整个过程,对学生的回答与表现给予肯定、表扬,由此保护并发展学生学习数学的好奇心、积极性。
说教学过程
在教学方法和理念的引领下,我将本节课的教学过程设计分为五个部分:创设情境,引入新课;合作交流,探索新知;巩固练习,熟练技能;总结反思,发展情意;布置作业。
(一)创设情境,引入新课
首先我让学生观察课本上的三幅图,通过设置问题串,让学生复习小学学过的自然数、零和分数,让学生了解到数是因为实际生活的需要产生的、同时增加一个新的问题:某市某天的最高气温是零上3℃,最低气温是零下3℃,要表示这两个温度,如果都记作3℃,这样就不能把它们区别清楚、这样之后学生很容易就发现,用以前学过的数不能简洁清楚地表示这两个数,由此需要产生一种新数,自然而然地引入了新课、这样的引入,既符合学生已有的认知基础,又能够较好地激发学生探索问题的欲望。
(二)合作交流,探索新知
接着,我根据学生已经产生的认知冲突及时地给出4个实际例子让学生练习,帮助他们理解具有相反意义的量,进入合作交流,探索新知的环节、我会在学生练习时进行巡视、具体的例题如下:
例1:气温有零上3℃和零下3℃;
例2:高于海平面8848米和低于海平面155米;
例3:收入50元和支出32元;
例4:汽车向东行驶4千米和向西行驶3千米、
我会让学生对以上例子中出现的每一对量进行讨论、由于学生的语文基础,很容易就发现:零上和零下,高于和低于,收入和支出,向东和向西都是一对反义词、于是我在学生回答的基础上,进一步归纳出它们的共同特点:零上和零下,高于和低于,收入和支出,向东和向西,都是具有相反意义的量、然后让学生自己举出一些日常生活中具有相反意义的量的实例、学生在阅读课本后很容易就会回答:足球比赛中的净赢球和净输球;花生产量的增长和减少;体重的增加和减少等例子、这样的举例,一方面能够充分调动学生参与的热情,另一方面也为新知的展开铺平了道路、
帮助学生理解了具有相反意义的量后,我将带领学生回到创设情境中产生的问题:零上3℃和零下3℃应该如何表示?一边引导学生,一边归纳总结:对于具有相反意义的两个量,如果其中一种量用正数表示,那么另一种量可以用负数表示、通常地,我们规定盈利、存入、增加、上升为正,亏损、支出、减少、下降为负、如零上3℃和零下3℃可以表示成+3℃和—3℃;收入50元和支出32元可以表示成+50元和—32元、这里建立正数与负数的概念时,我会特别强调,零既不是正数也不是负数,它是正数与负数的分界、同时指出,0不仅仅表示“没有”的意义,还有确定的意义,比如0℃就是一个确定的温度、
(三)巩固练习,熟练技能
为了使学生实现由掌握知识到运用知识的转化,我将通过形式不同的练习,让学生把知识转化成技能、如课本上的练习:判断正、负数以及用正、负数表示具有相反意义的量、在判断正、负数的时候,我将再一次强调学生的易错点:0既不是正数,也不是负数、而其中一道练习:如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化就可以记作—3m,水位不升不降时水位变化可以记作0m、这里也要特别强调0表示的意义、由此让学生加深对正、负数概念以及零的意义的理解、课内及时练习,反馈调整,有利于提高课堂的教学效率,减轻学生的课外负担、
(四)总结反思,发展情意
练习之后,我将引导学生通过回顾本节课所学内容,结合教学目标,归纳总结出本节课的知识要点:(1)用正数与负数表示具有相反意义的量;(2)零既不是正数也不是负数、从而起到了对本节课巩固深化的作用、这样不但可以梳理学生的思维,促进学生记忆,而且可以让学生的知识结构更合理、更完善、更有所侧重、
(五)布置作业
最后,针对所有学生的实际情况,布置课后练习作业,并将作业进行分层,这样可以充分调动学生的学习积极性,同时也适应了不同学生的不同要求,切实减轻学生的课业负担、
各位老师,以上说课只是我在短时间内以教师为主导,学生为主体为指导思想设计出来的一种方案,一定存在很多不足的地方,如果准备时间充分的话,我会在教学过程这一模块进行更多细节的探讨,让本节课的内容讲授更贴近学生的实际情况,让学生更容易接受新知识、
初一数学说课稿范文 第二篇
一、教材分析:
《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。
鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:
1、知识目标:
经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。
2、能力目标:
经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。
3、情感目标:
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。
二、学情分析:
我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。
在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。
三、教法选择及学法指导:
初一数学说课稿范文 第三篇
一、教材分析
(一)教材地位:这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标:
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.
情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.
三、教学过程设计
1.创设情境,提出问题
2.实验操作,模型构建
3.回归生活,应用新知
4.知识拓展,巩固深化
5.感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏勾股定理数形图1955年希腊发行美丽的.勾股树2002年国际数学的一枚纪念邮票大会会标
设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来米长的云梯,如果梯子的底部离墙基的距离是米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.
二、实验操作模型构建
1.等腰直角三角形(数格子)2.一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.
通过以上实验归纳总结勾股定理.
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律.
三.回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.
四、知识拓展巩固深化
基础题,情境题,探索题.
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.
基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.
情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.
五、感悟收获布置作业:
这节课你的收获是什么?
作业:
1、课本习题
2、搜集有关勾股定理证明的资料.
板书设计探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明:
1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.
2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.
初一数学说课稿范文 第四篇
一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
二、教学重点:勾股定理的证明和应用。
三、教学难点:勾股定理的证明。
四、教法和学法: 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:
以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。(二)初步感知理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
初一数学说课稿范文 第五篇
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、解方程在整个知识系统中的地位和作用是很重要的。
初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。解方程是代数中的主要内容之一。一元一次方程有许多直接的应用,最主要的,解一元一次方程是学习其它方程和方程组的“基石”。解各种方程和方程组,通过降次、消元等方法,最后都归纳为解一元一次方程。
2、一元一次方程这一章可以归纳为两个方面:
第一方面的内容是等式的有关概念,等式的性质以及方程的有关概念;第二方面的内容是一元一次方程的概念,解一元一次方程的步骤,以及列出一元一次方程解应用题。解方程是列一元一次方程解应用题的基础,本章的学习重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题。学生能否正确的解方程和列一元一次方程解应用题关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
3、接下来,介绍本节课的教学目标、重点和难点。
教学大纲是我们确定教学目标,重点和难点的依据。根据教学大纲的要求,确定了本节课的教学目标。
1、知识目标是:
(1)熟悉利用等式性质解一元一次方程的基本过程;
(2)通过具体的例子,归纳移项法则;
(3)掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数)能判别解的合理性。
2、能力目标是:
(1)通过学生观察、独立思考等过程、培养学生归纳、概括的能力;
(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3、情感目标是:
(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯。
(2)培养学生严谨的思维品质。
由于合并同类项学生已非常熟悉,系数化成一实际是利用等式的性质,而移项是新事物又是解方程的关键,因此本节课的重点是:移项法则及其应用。由于本阶段的学生往往注意不到项的符号及移向后的符号,很容易出现符号错误。因此我确定本节课的难点是;移项的同时要变号。
二、教材处理
本节课是在前面学习了《你今年几岁了》的基础上进行的,学生已经很牢固地掌握了方程、一元一次方程的概念及等式性质并且能利用等式性质熟练的解方程,因此我没有把时间过多地放在复习这些旧知识上,而是通过游戏激发学生的兴趣,这样既巩固了前面所学的知识又培养了学生的创造能力,真是一举三得。进而设疑激发学生的好奇心,为后面的学习做好准备。采用生动形象的事例,在移项法则的得出过程中,我让学生自主观察发现规律并用自己的语言描述规律的内容。
然后交流各自所发现的规律及用语言表书的过程,这样通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。由于在移项时,学生常犯一些错误,如移项忘记变号,因此在例题的处理上我采取用两种方法解例1、例2,并将两者加以对照,进而使学生加深对移项法则的理解且自觉改正错误。然后我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学手段
在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的.求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
四、教学过程的设计。
1、引入:
①通过游戏引入:同学们,你们是不是经常完游戏?今天我们来玩一个数学游戏,我手中有6、X、30三张卡片,请同学们用他们编一元一次方程,比一比看谁编的又快又对。学生思考,根据自己对一元一次方程的理解程度自由编题。
②设疑:现在老师遇到一道难题,请同学们帮助解决一下,请看大屏幕:解方程5X—2=8解:5X=8+2X=2看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
2、探索规律,总结移项法则:
出示引例并鼓励学生通过观察归纳,独立发现移项法则。对有困难的同学,教师通过适当的语言提示,引导学生发现规律。这样学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出移项法则。
3、例题:
对于例1,首先鼓励学生试着解方程,教师注意发现学生可能出现的错误,把错误集中起来,组织学生进行组织交流。最后规范书写格式。例2,教师首先放手让学生去做。只要学生的解法合理就鼓励。
4、巩固练习:
再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
5、归纳总结:
教师引导学生做出本节课小结,归纳解方程的方法及易出错的地方。以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
初一数学说课稿范文 第六篇
一、说教材的地位和作用
本节课是七年级上册第五章第四节,也学生学习一元一次方程含义和解一元一次方程的解法后,通过分析图形问题中的数量关系,建立一元一次方程解决实际问题,认识方程模型的重要环节。
二、说教学目标:
1、知识目标:
①让学生通过分析实际问题中的“不变量”,建立方程解决问题。
②让学生明白运用方程解决问题的关键是找到等量关系并建立数学模型。
2、能力目标:设未知数,正确求解,并验明解的合理性。
3、情感目标:激发学生的学习情绪,让学生在探索问题中学会合作。
三、说教学重点:
如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。
四、说教学难点:
如何从实际问题中寻找等量关系建立方程。
五、说教学方法:
三疑三探自探式
六、数学思想方法:
方程的思想、化归数学思想
七、说教学过程:
引入:
情景1、放映“朝三暮四”的动画(附内容:从前有一个叫狙公的人养了一群猴子.每一天他都给足够的栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴的直打筋斗)请大家谈自己的看法!
1、设疑自探
动手把自己的橡皮泥做作圆柱压一压,看看有什么变化!手压前和手压后有何变化?你发现了一个相等关系没有?能用自己的话告诉大家吗?
①我为什么会变胖?变胖过程有那些量在变化,那些量没有变化?
②利用一元一次方程怎样解决等体积变化问题?
③利用一元一次方程等周长变形问题?
④列方程的关键是什么?
⑤周长不变,围成长方形图形和正方形,那种面积最大?
⑥应用方程解决问题的一般步骤是什么?
2、解疑合探
问题1:
将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底
面直径为20厘米的“矮胖”形圆柱,高变成了多少?
第一步:引导学生审题
第二步:假设未知数
第三步:找等量关系
第四步:列方程
第五步:解方程
第六步:解释其解的合理性
第七步:答
3、质疑再探
问题2:
①把一根铁丝围成一个长方形,有多少种围法?它们的周长改变了吗?它们的面积都相等吗?
②用一根长为10米的铁丝围成一个长方形,使得该长方形的长比宽多米,此时长方形的长、宽各是多少米呢?面积是多少?
③使长方形的长比宽多米,此时长方形的长、宽各为多少米?它所围成的长方形与第一次所围成的长方形相比,面积有什么变化?
④若使长方形的长和宽相等,即围成一个正方形,此时正方形的边长是多少米?围成的面积与前两次围成的面积相比,又有什么变化?
4、拓展运用
①墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示。小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示。小颖所钉长方形的长、宽各为多少厘米?
②若小明用10米铁线在墙边围成一个长方形鸡棚,使长比宽大5米,但在宽的一边有一扇1米宽的门,那么,请问小明围成的鸡棚的长和宽又是多少呢?
八、知识小结
本课学了如何在问题中寻找等量关系,并建立方程解决问题.问题解决之后如何验证它的合理性
1、等体积变化:
锻压前体积=锻压后体积
锻压前重量=锻压后重量
2、等周长变形:变形前周长=变形后周长
3、列方程的关键是正确找出等量关系
4、列方程的关键是正确找出等量关系
5、线段长度一定时,不管围成怎样的图形,周长不变。
6、长方形周长不变时,长方形的面积随着长与宽的变化而变化,当长与宽相等时(即正方形),面积最大
7、应用方程解决问题的一般步骤:审、设、找、列、解、检、答
初一数学说课稿范文 第七篇
一、 教材分析
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.
情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.
三、 教学过程设计1.创设情境,提出问题 2.实验操作,模型构建 3.回归生活,应用新知
4.知识拓展,巩固深化5.感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树 2002年国际数学 的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.
(2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来米长的云梯,如果梯子的底部离墙基的距离是米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.
二、实验操作模型构建
1.等腰直角三角形(数格子)
2.一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.
通过以上实验归纳总结勾股定理.
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律.
三.回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.
四、知识拓展巩固深化
基础题,情境题,探索题.
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.
基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为_,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维.
情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.
五、感悟收获布置作业:这节课你的收获是什么?
作业: 1、课本习题 2、搜集有关勾股定理证明的资料.
板书设计 探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明::1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.
2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.
初一数学说课稿范文 第八篇
一、教材分析
1、教材的地位与作用
“中心对称”和下一节“中心对称图形”是初中数学教学中的一项重要内容,它与轴对称和轴对称图形有着紧密的联系和区别,同时与图形的三种变换(平移、翻折、旋转)中的“旋转”有着不可分割的联系。实际生活中也随处可见中心对称的应用.通过对这一节课的学习,可以完善初中对“对称图形”的知识讲授,并为前面平行四边形的学习做必要的补充。.
2、教学目标
(1)知识目标:理解两个图形关于一点对称的概念,并掌握它们的性质。会画一个图形关于某一点的对称图形。
(2)能力目标:通过对中心对称性质的发现,提高学生分析问题、解决问题的能力,体验猜想、化归、等数学思想。
(3)情感态度:深刻体会对称在生活中的广泛存在及运用价值,通过设计简单的对称图形,体验中心对称的美感,提高同学们对数学的兴趣.
3、重点、难点
(1)重点:中心对称的概念和性质。
(2)难点:中心对称的性质的应用。
二、教法分析和学法指导
1、教法分析
根据课程标准的指导思想,鉴于本节教材的特点和学生的心理特征,我确定了以启发、实践、交流为主的教学方法。努力培养学生观察、思考、交流、合作的学习品质,以及猜想、类比、归纳、概括的思维习惯。几何图形的旋转是学生学习的难点,为了培养学生的抽象思维能力,我运用了的多媒体技术,把动态的问题直观地表现出来,使学生更容易理解并掌握中心对称的概念与性质。
2、学法指导
本节课,我从学生已有的生活体验出发,引导学生通过各种形式的活动,从数学的角度去观察事物、思考问题,让学生在画图过程中培养动手动脑的能力,并在动手动脑的过程中逐步理解中心对称的定义和性质,使学生真正实现由“学会”到“会学”的质的飞跃。
三、教学程序设计
1、创设情景,引入新知
首先复习轴对称与旋转图形的定义,结合课本62页,让学生观察图形,回答问题:
①把其中一个图案绕点O旋转180°,你有什么发现?
②线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180°,你有什么发现?先让学生从旋转变换的角度分别观察两个图形之间的关系,必要时采用多媒体演示,加深学生的印象,从而引入中心对称的定义。让学生体会到知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式(中心对称中要求旋转角必须为180度)渗透了从一般到特殊的数学思想方法。接着,对“轴对称”和“中心对称”的概念进行比较,我采用列表格的方式,从三个方面分别让学生去填,以便加深对两个概念的区别与联系的理解。
2、动手实践,探究新知
学生在教师的引导下动手操作,完成第63页探究,旋转三角尺,画关于点O对称的两个三角形。学生自己动手画出两个中心对称的三角形后,及时开展中心对称性质的研究。学生在观察和讨论后,由师生合作,归纳出中心对称的性质:
(1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;
(2) 关于中心对称的两个图形是全等图形.让学生尝试自己证明△ABC与△A′B′C′全等,然后在教师的引导下相互交流。
3、应用新知
1) 讲授64页例1。
(1)选择点O为对称中心,画出点A关于点O的对称点A′;
(2)选择点O为对称中心,画出与△ABC关于点O的对称△A′B′C′.在老师的引导下,共同完成作图,并规范画图方法:要画一个多边形关于已知点的对称图形,只要画出这个多边形的各个顶点关于已知点的对称点,再顺次连接各点即可。
在本次活动中,教师应重点关注:
(1) 学生画出图形后,能否加深对中心对称的性质的理解;
(2) 学生不同的作图方法.
2)、课后练习。以适当的练习巩固本节课的知识点,使学生能熟练画出成中心对称的图形,巩固学生的作图能力,并会简单应用中心对称的性质.
3)、拓展应用
已知四边形ABCD,分别以顶点A,BC边的中点,四边形内部的一点为对称中心,画对称图形在同一个图形中,进行不同的变式训练,来巩固加深同学们对知识的理解,提高学生运用知识,解决问题的能力。
4、归纳小结
今天这节课即将结束,你能告诉老师你的收获吗?
学生相互归纳和补充(幻灯片展示)。教师应重点关注不同层次的学生对本节知识的理解、掌握程度.相互交流一下学习过程的感受、认识、想法和收获。
5、布置作业
课本67页第1题;68页第7题
四、教学评价
本课由问题引入概念,从而激发学生研究问题、解决问题的欲望。接着,让学生自己动手操作,直观地得出两个图形关于某点对称的概念,并加深对概念的理解。充分利用多媒体演示,帮助学生掌握两个图形关于一点中心对称的概念、性质和画法,尽量使图形直观化,效果更明显。在教学时使学生的尝试和探究贯穿课堂全过程,同时重视教师的引导、指导和示范,还有教师与学生、学生与学生的互动等。这样有利于学生对概念的理解,也有利于培养学生的学习能力和学习习惯。
初一数学说课稿范文 第九篇
尊敬的各位评委,老师:
大家好!我是来自瓦室初级中学的教师刘永军。今天我要为大家讲的课题是华师大版义务教育课程标准实验教科书七年级数学(下册)第6章第1节《从实际问题到方程》,总共1课时。
下面,我将从以下六个方面对本节课的设计进行说明:
一、教材分析
1、教材的地位与作用
《数学课程标准》对本章的要求:学生探索数、形及实际问题中蕴含的关系和规律,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力。
在教学中应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系。
解一元一次方程是有理数和整式知识的进一步应用。它是初等数学的一项基本知识和技能,也是今后学习一次方程组、一元一次不等式及一元二次方程的基础。一元一次方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的开端,也是让学生体会数学价值观,增强学数学、用数学意识的重要题材。教材中渗透的数学建模思想和类比、化归、归纳等数学思想方法,都是学生今后学习和工作中必备的数学修养与素质。
2、教学内容
本章的主要内容有两个方面:
①一元一次方程的基本概念及其解法;
②一元一次方程在实际问题中的应用、实践与探索。教材注重了两者的有机结合,让学生经历和体会从实际问题中抽象出数学模型,并回到世界问题中解释和检验的过程。这是初等数学的基本运算工具,也是提高学生思维能力和分析问题、解决问题能力的重要载体。教材从实例出发,引入一元一次方程的有关概念,讨论一元一次方程的解法及其应用,注重渗透数学建模的思想,培养学生运用数学知识解决实际问题的意识与能力。
二、学情分析
七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。
三、教学目标、重点、难点
知识与技能:
①能辨别出方程。
②能判断一个数值是否是某个方程的解。
过程与方法:
①以求解一个实际问题为切入点,经历实践、思考、探索、讨论、交等活动,培养解决问题的兴趣和能力。
②探索具体问题中的数量关系和变化规律用方程进行描述,初步体验方程是刻画现实世界的一个有效的数学模型,体会数学的应用价值。
情感态度与价值观:
①通过自主学习活动逐步养成良好的学习习惯,提高自主学习能力和合作精神;
②体验在生活中学数学、用数学的价值,感受学习数学的乐趣。
重点:
①寻求实际问题中的相等关系并用方程描述。
②让学生初步感受方程是解决问题的重要方法。
难点:
寻找实际问题中的相等关系以及理解方程的解。
四、教学方法
- 上一篇:探视权起诉书范文(精选6篇)
- 下一篇:致公司道歉信范文(精选22篇)
最新范文:
- 药品集中采购分析报告范文(精选9篇)
- 采购补充合同范本(精选5篇)
- 租办公楼合同范本(精选14篇)
- 英语作文范文中考翻译(精选5篇)
- 地面工作计划22篇
- 环保部工作计划(精选17篇)
- 团委个人工作总结7篇
- 早教合同范本(精选8篇)
- 销售承包合同范本(精选15篇)
- 普通话工作总结22篇