合同范文工作计划范文工作总结范文合作方案范文日志日报范文工作报告范文年终总结范文申请书范文通知书范文请假单范文活动策划范文活动报道范文简历范文委托书范文授权书范文论文范文简报范文志愿书
高三数学资料序言范文12篇
高三数学资料序言范文 第一篇
人的角度比较宽泛,我个人为可以从以下几点说起,
自身:对你而言数学是一个什么科目?如果希望数学能提提分,那就是努力,如果只求数学别拉分,呃呃呃,那就不适合你看这篇文章了
做数学题最需要的两点我认为是专注和想象力
专注可以让你研究题的时候思路可以延续,想象力可以让你在做题的时候出现一题多解或者同类总结
如果你没有以上两点,那么高考数学,可能不太适合你(天赋型选手除外)
家庭环境:对于学习这个事情,是一个长久的事情,希望你的家庭可以尽可能地提供支持,而不是拖后腿
学校环境:这个取决于老师和同学的素质,如果你老师不错,那是你三生有幸,如果你同学们还不错(指学习上)那就是大大滴好
对下限来说,环境占比高;对上限来说,个人水平占比大。
高三数学资料序言范文 第二篇
第一单元观察物体(三)
1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
注意点
1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
高三数学资料序言范文 第三篇
尊敬的各位领导、老师:
大家好!
我是新泰一中数学教研组任课老师杨锐,在20xx年——20xx学年担任数学备课组长,取得备课组成绩和个人教学成绩双丰收。现在我介绍一些我个人和备课组在高三复习中的做法,与大家交流。
高考命题是以《高考数学考试说明》为依据的,高三数学复习要以《说明》为指导,在内容取舍上,应以考试内容为准,不随意扩充、拓宽和加深;注意各知识点的难度控制。
一、复习步骤和目标
第一轮:注重基础。(20xx年9月初—20xx年3月上旬)。
第二轮:(20xx年3月上旬—5月初)。
一个半月。定位是“重点专题上台阶,综合训练提能力”。要求:瞄准考点,精设专题,使所学知识与高考好好对接。方法:突出重点,归纳迁移,加强做题的规范性,准确性和时效性训练,提升学生的综合思维能力和解决实际问题的能力。口号是:提高提高再提高。题目的难度较第一轮略有上升。先是分章节的综合训练,教师主要是评讲卷,针对卷子中学生暴露的问题一一点评;然后是针对学生应试能力的训练,主要侧重于选择题和填空题的训练。
专题安排主要是:主干知识6大块:
(1)函数、方程、不等式、导数;
(2)数列;
(3)三角;
(4)解析几何;
(5)立体几何;
(6)概率与复数。
主要是提高学生分析问题、解决问题的能力,提高综合能力。
第三轮:(20xx年5月初至高考)1个月。
定位是“综合训练攀高峰,知识回扣固基础”。根据各地的高考信息编拟好冲刺训练的模拟试卷,通过规范训练,发现平时复习的薄弱点和思维的易错点,提高实践能力,走近高考。主要是做各地的模拟题,这时候是高强度的训练。训练考试技巧和学生的应试心理的调整阶段,也就是加强非智力因素的训练了。回归课本,查缺补漏,再现知识点。树立信心,以积极的心态应对考试。口号是:规范规范再规范。
二、复习措施
首先我们加强了备课组的协作,发挥集体智慧。使备课组成员心往一处想,劲往一处使,针对复习中存在的突出问题,加强集体备课,共同研究寻找对策。
其次针对学生情况,如何提高数学复习的质量,实现良好的复习效果。经过备课组的积极探讨和研究,我们打算从几个方面抓起:
1、抓学习节奏。
数学的复习备考分为不同的阶段,不同的教学方式交替使用。没有一定的速度是无效率的复习与学习,慢腾腾的学习训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在高三复习备考教学的全过程中一定要有节奏,这样久而久之,思维的敏捷性和数学能力就会逐步提高。
2、抓知识形成、重视解题过程的教学。
数学的一个概念、定义、公式、法则、定理等都是数学的基础知识,这些知识的形成过程容易被忽视。事实上,这些知识的形成过程正是数学能力的培养过程。一个定理的证明,往往是新知识的.发现过程。因此,要改变重结论轻过程的教学方法,解题过程的教学就是数学能力培养的过程。
3、抓复习资料的处理。
复习备考的过程是活的,学生的学习也是不断变化的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,复习资料并不能完全反映出来。数学能力是随着知识的发生而同时形成的,无论是重温一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。通过老师的引导,理解所复习内容在高中数学体系及高考中的地位,弄清与前后知识的联系等。
4、抓问题暴露。
在数学课堂教学中,老师一般少不了提问与板演,有时还伴随着问题讨论。因此可以听到许多的信息,这些问题是开放的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来。暴露了的问题要及时抓,遗留的问题要有针对性地补,注重实效。
5、抓课堂练习。
数学课的课堂练习时间每节课大约占20%左右,这是对数学知识记忆、理解、掌握的重要手段,必须坚持不懈,这既是一种速度训练,又是能力的检测。学生做题是无心的,而教师所寻找的例题是有心的,哪些知识需要补救、巩固、提高,哪些知识、能力需要培养、加强应用,上课应有针对性。
6、抓解题指导。
要合理选择解题方法,优化运算途径,这不仅是迅速运算的需要,也是运算准确性的需要。运算的步骤越多,繁度就越大,出错的可能性就会增大。因而根据问题的条件和要求合理地选择解题方法、优化运算途径不但是提高运算能力的关键,也是提高其他数学能力的有效途径。
7、抓学法指导——抓住四个三:
①内容上要充分领悟三个方面:理论、方法、思维;
②解题上要抓好三个字:数,式,形;
③阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);
④学习中要驾驭好三条线:知识(结构)是明线(要清楚);方法(能力)是暗线(要领悟、要提炼);思维(练习)是主线(思维能力是数学诸能力的核心,创造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。)
各位领导各位老师,教育是一门遗憾的艺术,我们的工作还有很多不足,海纳百川,有容乃大,我们会诚恳向兄弟学校学习取经,在今后的教学中我们将会以积极的态度,饱满的热情,努力工作,争取更加优异的成绩。
谢谢大家!
高三数学资料序言范文 第四篇
各位老师:
大家好!
我想大家都知道,就在三天前,我们高20xx级的全体同学参加了今年的全国高考,这是他们人生第一次大考。从昨天开始,11级的同学正在有序离开学校,告别南山,告别他们人生最重要的一个阶段高中阶段。让我们鼓励他们,放心去飞,让我们祝福他们,越飞越高。
那么今天开始,我们在场的20xx级的同学就是我们校内的最高年级,最临近毕业的年级,而实际上我们的很多学科都已经在上高中第五学期的课程。因此,我们全体师生都应该意识到我们已经进入高三阶段了!毫无疑问,十几年的生涯,已经到了最关键的冲刺阶段,也可能是最艰苦的一个阶段,我们全年级师生务必作好思想上、心理上、身体上的全面的准备,迎接这样一个决战决胜的阶段。而我们这一届的同学,在老师的带领下,近两年的学习是稳步提升,富有成效。已经为高三冲刺奠定了坚实的基础。
同学们,我们将要参加的高考是这个社会、这个时代公平和正义的最有力的佐证。高考是人生成功的捷径,它使我们获得接受优质的高等教育机会。使我们从知识到经历都更加丰富,更加强大,更加符合时代对我们的要求。让我们少走弯路,更容易走向成功和辉煌,当然是人生的捷径。作为一个朝气蓬勃的青年应该以积极的姿态迎接和把握高考带给我们的机遇。
实际上经过各个阶段的学习,我们已逐步掌握学习的要领,考试的要素。学习就是要比谁更静得下来,更能深入其中,更能掌握好的方法,更有高的效率。考试的要素就是要比谁更熟练,谁更快捷,谁更准确。所有这些都是抱不得半点侥幸,来不得丝毫虚假,都需要我们全力以赴,学得真的知识,获得真的本领,使自己真正强大起来。当然,我也要提醒大家,冲刺的这一年,一定要有好的心态,那就是斗志昂扬的、积极向上的、心情舒畅的、与人为善的、阳光温暖的,与身边的同学、老师和父母是和谐融洽的,只有这样才可能有高效的学习,才可能有愈战愈勇的精神状态。
我还要提醒大家,艰苦的高三,并不是要大家一味的加班加点,贪多求难,无谓的增加数量,盲目的提升难度,相反需要的是我们科学安排,注重效率,尤其是抓好课堂和晚自习时间,注重节奏,劳逸结合,必须要留一定时间中午午休,晚上就寝一定要按时,这些实际上都是和学习效率紧密相关。我知道我们人群有少部分同学基础薄弱,带帐较多,差距较大,我希望大家一定不要放弃,不要逃避现实,逃避现实,未来就更不理想。今年的高考各科中低档试题份量充足,分值可观。在我们看来,只要学习态度认真,解题细致、规范就可能取得不差的成绩。在这种情况下,一年完全可以迎头赶上,但需要的是学会舍弃,放下一些东西,以时不待我,只争朝夕的态度深入学习之中。
目前情况稍好一点的同学,我要提醒大家,从今年的高考看,中低档题虽然多,但是必须要非常熟练,非常准确,数学和综合学科的高档难度题虽然比重不大,但足以拉开差距,这就要求我们也要敢于多下水,多用功夫,在中高难度的知识上。只有这样才能脱颖而出,站上高点。
老师们,陪伴我们的走过他们人生中最重要的阶段,让他们走得坚定而从容,勇敢而智慧,这是我们作为的责任,我们责无旁贷,我们也应珍惜,我们在成就学生的同时,也在成就我们的事业,让我们感到自己工作的非凡意义。在高三阶段,我们应该倾注更多的时间、精力研究高考,研究教材,研究试题,研究学生。讲学生之所需,练学生之所练,只有我们的工作更具智慧含量,我们的才可能少走弯路,才可能更有效率。让我们用心用情卓有成效的开展毕业班的教育工作。
老师们、同学们,一年的时间可能很短很无奈,以至于不留下丝毫痕迹,更枉谈创造奇迹。一年也可能很长很有作为,以至于改变我们的人生轨迹和方向,改变我们对人生的思考和感悟。重要的是我们用心用力去面对,我们就会有所作为,大有作为。不要问我们什么时候作出了选择,重要的是我们作出了选择之后就绝不后悔,不要问我们什么时候才开始努力,重要的是我们开始之后就绝不停止。
老师们、同学们,最后一年让我们心无旁骛,用心用力,在创造辉煌的同时,为我们的人生留下精彩记忆。
谢谢大家!
高三数学资料序言范文 第五篇
第三单元长方体和正方体
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:
(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:
(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
3、长方体、正方体有关棱长计算公式:
长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4
L=(a+b+h)×4
长=棱长总和÷4-宽-高
a=L÷4-b-h
宽=棱长总和÷4-长-高
b=L÷4-a-h
高=棱长总和÷4-长-宽
h=L÷4-a-b
正方体的棱长总和=棱长×12
L=a×12
正方体的棱长=棱长总和÷12
a=L÷12
4、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
无底(或无盖)
长方体表面积=长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab
S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2
S=2(ah+bh)
贴墙纸
正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2
生活实际:
油箱、罐头盒等都是6个面
游泳池、鱼缸等都只有5个面
水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高V=abh
长=体积÷宽÷高a=V÷b÷h
宽=体积÷长÷高b=V÷a÷h
高=体积÷长÷宽h=V÷a÷b
正方体的体积=棱长×棱长×棱长
V=a×a×a=a3
读作“a的立方”表示3个a相乘,(即a·a·a)
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
用字母表示:V=Sh(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米
1毫升=1立方厘米
1升=1000毫升
(1L=1dm31ml=1cm3)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)
注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:
V物体=V现在-V原来
也可以V物体=S×(h现在-h原来)
V物体=S×h升高
8、【体积单位换算】
大单位×进率=小单位
小单位÷进率=大单位
进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
大单位×进率=小单位
小单位÷进率=大单位
长度单位:
1千米=1000米1分米=10厘米
1厘米=10毫米1分米=100毫米
1米=10分米=100厘米=1000毫米
(相邻单位进率10)
面积单位:
1平方千米=100公顷
1平方米=100平方分米
1平方分米=100平方厘米
1公顷=10000平方米(平方相邻单位进率100)
质量单位:
1吨=1000千克
1千克=1000克
人民币:
1元=10角1角=10分1元=100分
高三数学资料序言范文 第六篇
第二单元因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征
1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等
4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.
关系:奇数+、-偶数=奇数
奇数+、-奇数=偶数
偶数+、-偶数=偶数。
5、自然数按因数的个数来分:质数、合数、1、0四类.
质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1:只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数
质数×质数=合数
6、最大、最小
A的最小因数是:1;
A的最大因数是:A;
A的最小倍数是:A;
最小的自然数是:0;
最小的奇数是:1;
最小的偶数是:0;
最小的质数是:2;
最小的合数是:4;
7、分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数(一个合数写成几个质数相乘的形式)。
比如:30分解质因数是:(30=2×3×5)
8、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
两数互质的特殊情况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;
⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
9、公因数、最大公因数
几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
10、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
11、求最大公因数和最小公倍数方法
用12和16来举例
1、求法一:(列举求同法)
最大公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
最大公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…
16的倍数有:16、32、48、…
最小公倍数是48
2、求法二:(分解质因数法)
12=2×2×3
16=2×2×2×2
最大公因数是:
2×2=4(相同乘)
最小公倍数是:
2×2×3×2×2=48(相同乘×不同乘)
高三数学资料序言范文 第七篇
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
高三数学资料序言范文 第八篇
教学目的:
掌握圆的标准方程,并能解决与之有关的问题
教学重点:
圆的标准方程及有关运用
教学难点:
标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:
说出下列圆的方程
⑴圆心(3,-2)半径为5
⑵圆心(0,3)半径为3
指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
判断3x-4y-10=0和x2+y2=4的位置关系
圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:
1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
高三数学资料序言范文 第九篇
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
一、求动点的轨迹方程的基本步骤。
1.建立适当的坐标系,设出动点M的坐标;
2.写出点M的集合;
3.列出方程=0;
4.化简方程为最简形式;
5.检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
3.相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
求动点轨迹方程的一般步骤:
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高三数学资料序言范文 第十篇
一、教学内容分析
本节内容是学生在学习了乘法原理、排列、排列数公式和加法原理以后的知识,学生已经掌握了排列问题,并且对顺序与排列的关系已经有了一个比较清晰的认识.因此关键是排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系,指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.
二、教学目标设计
1.理解组合的意义,掌握组合数的计算公式;
2.能正确认识组合与排列的联系与区别
3.通过练习与训练体验并初步掌握组合数的计算公式
三、教学重点及难点
组合概念的理解和组合数公式;组合与排列的区别.
四、教学用具准备
多媒体设备
五、教学流程设计
六、教学过程设计
一、复习引入
1.复习
我们在前几节中学习了排列、排列数以及排列数公式
相同排列
以上由学生口答.
2.引入
那么请问:平面上有7个点,问以这7点中任何两个为端点,构成有向线段有几条?
这是一个排列问题
若改为:构成的线段有几条?则为,
其实亦可用另一种方法解决,这就是组合.
二、学习新课
探究性质
1.组合定义:P16
一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.
【说明】:⑴不同元素;⑵“只取不排”——无序性;
⑶相同组合:元素相同.
2.组合数定义:
从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数.用符号表示.
如:引入中的例子可表示为
==这是为什么呢?
因为构成有向线段的问题可分成2步来完成:
第一步,先从7个点中选2个点出来,共有种选法;
第二步,将选出的2个点做一个排列,有种次序;
根据乘法原理,共有•=所以
•判断何为排列、组合问题:利用书本P16~P17例题请学生判断
•这个公式叫组合数公式
3.组合数公式:
如==
用计算器求、、、
可发现==
由此猜想:
用实际例子说明:比如要从50人中挑选4个出来参加迎春长跑的选择方案有,就相当于挑46个人不参加长跑的选择方案一样.“取法”与“剩法”是“一一对应”的.
证明:∵
又,∴
当m=n时,
此性质作用:当时,计算可变为计算,能够使运算简化.
4.组合数性质:
2、=
可解释为:从这n1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m(1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据加法原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.
证明:
得证.
【说明】1(公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.
2(此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.
2.例题分析
例1、(1),求x
(2)
(3)
略解:(1)
(2)
(3)
例2、应用题:
有15本不同的书,其中6本是数学书,问:
分给甲4本,且都不是数学书;
略解:(1)
3.问题拓展
例3.题设同例2:
(2)平均分给3人;
(3)若平均分为3份;
(4)甲分2本,乙分7本,丙分6本;
(5)1人2本,1人7本,1人6本.
略解:(2)(3)
(4)(5)
高三数学资料序言范文 第十一篇
此处我主要提供书单和使用指导意见(无广告费)
基础类:
书:高考数学题型全归纳(洞穿教育)书分为基础版和提高版本,我个人建议是都买。
紫色版本 (这个在我看来就是最基础的书了,连这个书也看不了,那高考就是有点为难你了)
试卷:衡水金考卷一轮复习,5年真题
中坚类:更高更妙的高中数学思想与方法(浙大优学)
高中教科书所有的习题(只要当你能理解书上为什么会有这个题的时候,你才是算是入门了高中数学)
试题:天星教育的黄绿蓝红,全年共计四套的卷子(双十一购买400出头)
拔高类:大学教材 高等数学(教材不限)
解析几何 (北京大学)
以上都是综合类书籍,现在分门推荐
导数书籍:导数的秘密(浙大优学)
导数小丸子(上下两本是一套的)他的书只有解题过程,缺少详解
几何书籍:平面几何方法证明全书 哈工大出版社
高三数学资料序言范文 第十二篇
教学目标
(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;
(2)能结合树形图来帮助理解加法原理与乘法原理;
(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;
(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;
(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。
教学建议
一、知识结构
二、重点难点分析
本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。
两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。
三、教法建议
关于两个计数原理的教学要分三个层次:
第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).
第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):
①用0,1,2,……,9可以组成多少个8位号码;
②用0,1,2,……,9可以组成多少个8位整数;
③用0,1,2,……,9可以组成多少个无重复数字的4位整数;
④用0,1,2,……,9可以组成多少个有重复数字的4位整数;
⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;
⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.
第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理.
教学设计示例
加法原理和乘法原理
教学目标
正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.
教学重点和难点
重点:加法原理和乘法原理.
难点:加法原理和乘法原理的准确应用.
- 上一篇:安全生产事故处罚通报范文(精选13篇)
- 下一篇:住宅物业有关论文范文(精选5篇)
最新范文:
- 药品集中采购分析报告范文(精选9篇)
- 采购补充合同范本(精选5篇)
- 租办公楼合同范本(精选14篇)
- 英语作文范文中考翻译(精选5篇)
- 地面工作计划22篇
- 环保部工作计划(精选17篇)
- 团委个人工作总结7篇
- 早教合同范本(精选8篇)
- 销售承包合同范本(精选15篇)
- 普通话工作总结22篇